Potato tuber moth at Java Phthorimaea operculella

vegIMPACT NL – Indonesia Kenhose

Klaas van RozenHuub Schepers

© Maries Elemans

Potatoes: life-cycle in the field

PLANT RESEARCH INTERNATIONAL

WAGENINGEN UR

Potatoes: life-cycle in the storage

1. Develop and design of GAP/IPM to control Potato Tuber Moth (Phthorimaea operculella). Current and new practices to control PTM Field Post-harvest Minimal input of synthetic insecticides 2. Describe a roadmap to the development/implementation of a biological product • success depends on point 1!

Kenhose

Discussion of the production chain and PTM biology:

 State of the Art
 Points of control action

Field visits

Potato production & IPM – critical phase?

Waiting for the nocturnal PTM

WAGENINGEN UR

Conclusions from field visits

Few moths, damage, caterpillars, eggs:

- Insecticide strategy Kenhose farmers sufficiënt
- PTM pest density?
- Effect natural enemies?
- New fields, converting nature into agriculture:
 - Impact natural enemies?
 - Impact insecticides?

Natural army

Insecticide potential

Insecticide	Active ingredient	Water life	Soil life	Groundwater	Pollinators	Natural enemies
NeemAzal-T/S / Oikos	azadirachtin				А	А
Tracer	spinosad				В	С
CoStar WG / DiPel DF	Bacillus thuringiensis subsp. kurstaki				А	Α
Steward	indoxacarb				В	В
Altacor	chlorantraniliprole				А	А
Vertimec Gold / Vectine Plus	abamectin				В	С
Tutavir	granulovirus PhopGV*				Α	Α

MONOGRAF NO. 18 ISBN : 979-8304-30-6

Wiwin Setiawati, R.E. Soerlaatmadja, T. Rubiati dan E. Chujoy

PENGENDALIAN HAMA PENGGEREK UMBI/ DAUN KENTANC (Phthorimaea operculella Zell.) DENGAN MENGGUNAKAN INSEKTISIDA MIKROBA GRANULOSIS VIRUS (PoGV

PLANT RESEARCH INTERNATIONAL WAGENINGEN UR

* granulovirus against Tuta selected from PTM

А	IPM	
В	Limited usable	
С	Not usable	

https://www.milieumeetlat.nl/

Influence solanaceae weeds and tomatoes?

Rotation – spatial and temporal dynamics

Adults do not oviposit in the soil close to tubers if potato foliage is available

- Spatial and temporal harvesting per field
- Potato plants should be larval free at harvest!

Production & IPM – critical phase East-Java

Harvest

New Zealand

- Primarily a field pest
- Cooled conditions PTM no risk
- Natural storage in the soil, year round fresh potatoes – PTM sensitive
- Damage in field after defoliation >2 weeks

United States

- No store problems (T regulated)
- From out of 50 stores 1 with severe PTM densities: from a heavily infested field

Ridges

Robust ridges at Kenhose potatoes

August 2019: 150 exposed, green potato tubers no eggs observed

20 July harvest farmer, 8 August -> Kenhose 1.8% PTM

14 August tuber check end L2/L3

PLANT RESEARCH INTERNATIONAL Wageningen UR

Critical phase: optimizing IPM

Experience in Tanzania

Nets (0,75 x 1,00 mm)

- Natural ventilated stores (nets in the door)
- Diffused Light Store (DLS), pre-germination, nets
- Extra traps with light, electric and pheromones
- Both stores no PTM (with outside PTM pressure)

Recommendation Kenhose IPM step by step

Current situation: stable • Control in the field and store IPM is (partly) carried out! Field Stimulating natural enemies - identification Selective insecticides – Btk, azadirachtin Harvest & storage Quick and clean harvest - sanitation Netting (0,75 x 1,00 mm) & cooling (<10°C)</p> Selective insecticides – Btk, granulovirus Population dynamics