

Maharijaya et al., (submitted) eet armyworm

http://ipb.ac.id

Controlling of beet armyworm (Spodoptera exigua Hubner) in shallot by non-chemical methods

Awang Maharijaya, Maxmilyand Leiwakabessy, Pritha Khrisrachmalia, Galuh Hanifatiha, Heri Harti, Kusuma Darma, Suryo Wiyono

- An essential commodity, especially in Asia, including Indonesia
- Consumed in both fresh and processed forms. The use of shallot has been widely known as a flavoring in food or used as an ingredient in herbal medicines because of its abundant in beneficial health substances
- Affect the national rate in Indonesia
- Demands for shallots in Indonesia and the international markets continue to increase from year to year

- Major insect pest in shallot
- 32-54% yield loss of shallot in Indonesia
- Short life cycle
- Polypahous
- Massive damage by *S. exigua* is reported in many production centers in Indonesia

- Most available varieties are susceptible
- Rely on chemical (pesticides)
- Not too effective; *S. exigua* are hiding in the leaf hollow make it difficult to reach by contact pesticides
- High frequency and dosage (up to 30 times in two months)
- High cost: 9-26%
- Environmental and health issue

- to evaluate the effectiveness of non-chemical methods for controlling the *S. exigua* in shallot cultivation in the field.
- We assessed the use of a light trap in combination with *Spodoptera exigua* Nuclear Polyhedrosis Virus (SeNPV), egg hand-picking, and insecticide, neem, and *Bacillus thuringiensis* (Bt) technically and economically.

Materials and methods

Inspiring Innovation with Integrity

Experiment

• Variety: Bima Brebes

S. exigua control methods

- a) Standard insecticide application by farmers
- b) The use of light traps in combination with SeNPV treatment (LT-SeNPV),
- c) Light trap in combination with SeNPV treatment and egg collection (LT-SeNVP-collecting),
- d) Light trap in combination with chemical insecticide one time in a week (LT-insecticide),
- e) Insect net with chemical insecticide one time in a week (net-insecticide),
- f) Neem two times in a week (neem),
- g) B. thuringiensis two times in a week (Bt), and
- h) Chemical pesticide application three times in a week (insecticide 3x)

E 7

D1	C1	D3	B2		 E2		A1	G1	G3	A2	H1	Н3	
B1	D2	C2	С3	B3	E1	E3	F1	F2	G2	F3	А3	H2	

Light trap treatment

Inspiring Innovation with Integrity

http://ipb.ac.id

Layout

Observations

- Number of eggs
- Number of L1-L2 larvae
- Number of L3-L4 larvae
- Number of adults
- Damage score (from 0 to 3)
- Yield
- Total cost production, R/C ratio, and profit

Spodoptera exigua observed in this study. (a) eggs (indicated by arrow), (b) L1-L2 larvae, (c) L3-L4 larvae, (d) adult

Results & Discussions

Maharijaya et al., (submitted)

Non-chemical methods are more effective than insecticide applications

Inspiring Innovation with Integrity

Inspiring Innovation with Integrity

Severity of damage caused of *Spodoptera exigua* on shallot with different control treatments

35.00

Maharijaya et al., (submitted)

http://ipb.ac.id

25,000

Fresh tuber yield (Kg) of shallot using different *Spodoptera exigua* control treatments

	Total cost (IDR)	RC Ratio	Profit (IDR)	egg population	population of 1- 2 larvae	population of instar 3-4 larvae	damage index	yield
Total cost (IDR)	1.00							
RC Ratio	-0.90	1.00						
Profit (IDR)	-0.80	0.97	1.00					
egg population	0.34	-0.19	-0.11	1.00				
population of 1-2 larvae	0.17	-0.16	-0.08	0.79	1.00			
population of instar 3-4 larvae	0.23	0.02	0.17	0.87	0.69	1.00		
damage index	0.57	-0.40	-0.26	0.85	0.70	0.80	1.00	
yield	-0.36	0.69	0.83	-0.01	-0.01	0.36	0.04	1.00

Inspiring Innovation with Integrity

	Total cost (IDR)	RC Ratio	Profit (IDR)
Insecticide (standard)	158,399,970	1.65	95,400,030
LT-SeNPV	118,336,667	2.05	124,063,333
LT-SeNPV-collecting	125,536,667	1.98	123,463,333
LT-Insecticide	137,211,667	1.82	112,688,333
Net-insecticide	137,186,667	1.63	79,713,333
Neem	126,685,000	1.84	106,415,000
Bacillus thuringiensis	138,194,867	1.73	100,905,133
Insecticide 3X	162,636,667	1.36	59,063,333

Conclusions

- Non-chemical methods are more effective than insecticide applications
- The light trap can potentially be used in shallot cultivation resulting in higher profit and cleaner environment
 - Compared to neem and Bt, the use of light trap plus SeNPV seems to be preferable. The total cost of control using neem and Bt are higher than using a light trap plus SeNPV.
 - Another reason is that the constraint of using neem and Bt for its effectiveness toward S. exigua that prefers to stay in the leaf hollow
 - The challenge of using a light trap before is the availability of electrical sources. However, this should not be a big concern now since there are many options for a portable light trap using battery or even using solar panels as we did in this present study

Thank You

