

Shallot Integrated Pest Management

Y. Andi Trisyono

Department of Crop Protection

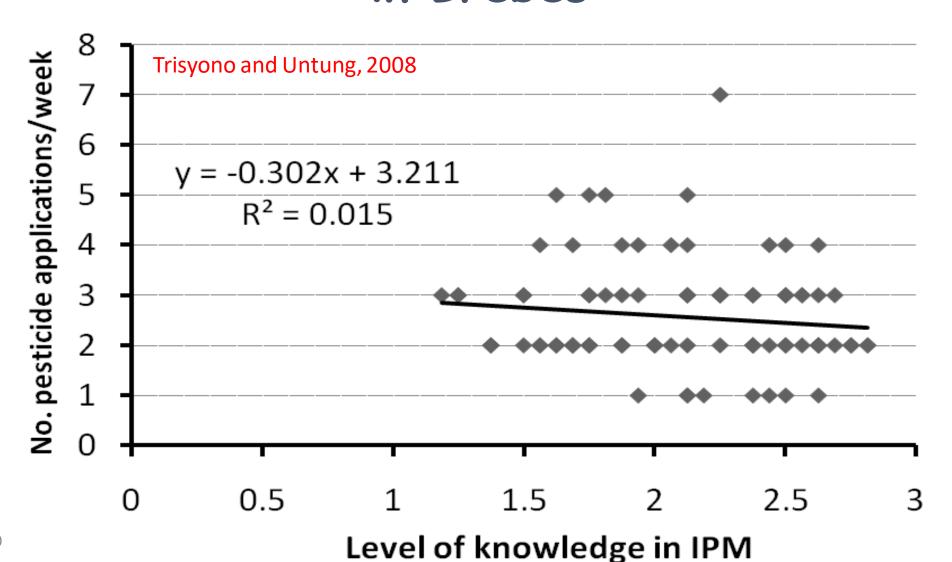
Faculty of Agriculture UGM; Yogyakarta 55281

Webinar True Shallot Sees Workshop 2020; vegIMPACTNL; October 21-22, 2020 WUR, Department of Agriculture, and YBTS

Topics

- Common practices in pest control: past vs. recent
- Problems of insect resistance
- Proposed management concept and practices

Spodoptera exigua (Photo by Wibisono 2009)

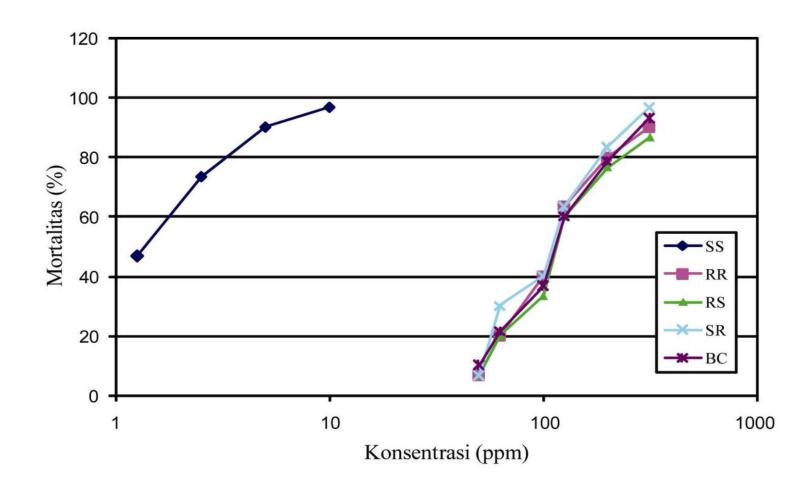


Shallot Farmers in Undertanding the Principles of IPM

No	Indicators	Bantul*		Brebes*	
		Alumni	No FFS	Alumni	No FFS
1	Principles of IPM	2.3 aA	1.8 bA	2.2 aA	1.9 bA
2	Decision making process	2.3 aA	2.0 bA	2.2 aB	2.1 aA
3	Risks of pesticide	2.1 aA	1.6 bA	1.5 aB	1.5 aB
4	Price determinants	2.1 aA	1.8 aB	2.1 aA	2.1 aA
5	Assistance	2.0 aB	1.4 bB	2.4 aA	2.2 aA

Pesticide Usage by Shallot Growers in Brebes

Insecticide Applications (Aldini et al. 2020)


	No	No Farmers (%)			
Applications	Brebes	Nganjuk	Bantul		
A. 1. Schedule spray (days)	100,0	100,0	86,7	95,6	
a. One	30,0	40,0	15,4	29,1	
b. Two	46,7	60,0	38,5	48,8	
c. Three	20,0		38,5	17,8	
d. Four	3,3		7,7	3,3	
e. Five			3,8	1,1	
2. Based on observations			13,3	4,4	
B. Product rotation					
1. With rotation	63,3	63,3	50,0	58,9	
2. No rotation	36,7	36,7	50,0	41.1	

Resistance of Spodoptera exigua universitas GADJAH MADA methoxyfenozide (Wibisono et al. 2009)

Population	RR	Population	RR
Sanden	1	Jatibarang	31
Kretek	5	Songgom	75
Pundong	30	Bulukumba	77
Panjatan	45	Kersana	93
Bagor	34	Larangan	141
Gondang	42	Tanjung	203
Sukomoro	45	Brebes	219
Rejoso	47	Wanasari	241

Characteristics of Resistance in Spodoptera exigua to Methoxyfenozide

(Wibisono et al. 2009)

Genetics of Resistance to methoxyfenozide in field populations of *Spodoptera exigua*

- Inherited dominantly
- No maternal effects
- Monogenic

(Wibisono et al. 2009)

Spodoptera exigua populations in Java have developed resistance to mostly used insecticides (Aldini et al. 2020; submitted)

How much do we know about the bioecology of Spodoptera exigua?

Do we catch the male moths when shallot is not in the fields?

Population dynamic: Spodoptera exigua Moth Capture

No.	Crop Season	Dates	No. moth/ 10 traps/wk
1	Chili	Nov 15, 2009 – Dec 10, 2009 (4 wks)	31
2	Rice	Dec 24, 2009 - Feb 28, 2010 (9 wks)	55
3	No crops	March 7-14, 2010 (2 wks)	31.5
4	Shallot	Mar 20, 2010 – Apr 15, 2010 (3 wks)	139.7

Reflective Question?

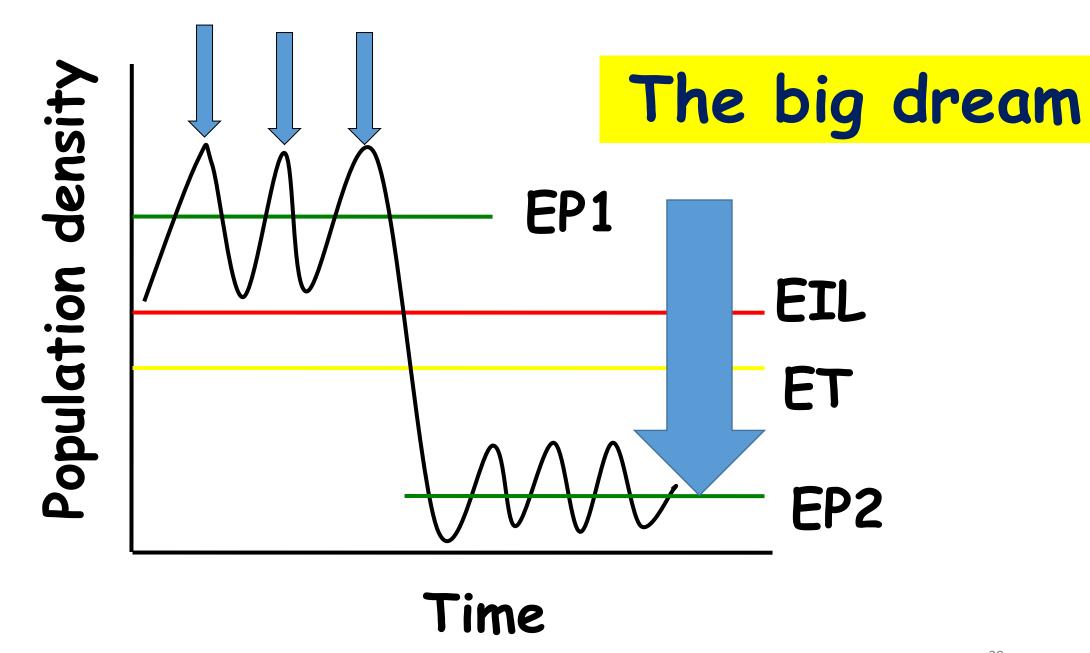
• Where do *Spodoptera exigua* feed and live on when shallot is not present in the fields?

Ujiyani (2019)

- Spodoptera exigua moths were caught no matter what plants were in the fields, and the traps caught more when shallot was present
- Thousands of eggs and larvae were collected from the fields and were exposed to the fields but no parasitoid emerged from eggs and larvae of *S. exigua*.

Something to Think

• If we could reduce the populations of Spodoptera exigua while shallot is not in the fields, will we have the same number of insects entering our early shallot plantation compared to if we do not nothing?


Summary

- Insecticides are the most common control measure for *Spodoptera exigua* and they are not used properly
- Resistance to insecticides commonly used is present and becomes a real problem
- This insect is present all year around even when shallot is not in the fields---alternate hosts
- Biological control agents, specifically parasitoids, are not playing their role

Need to Change the Approach (Paradigm)

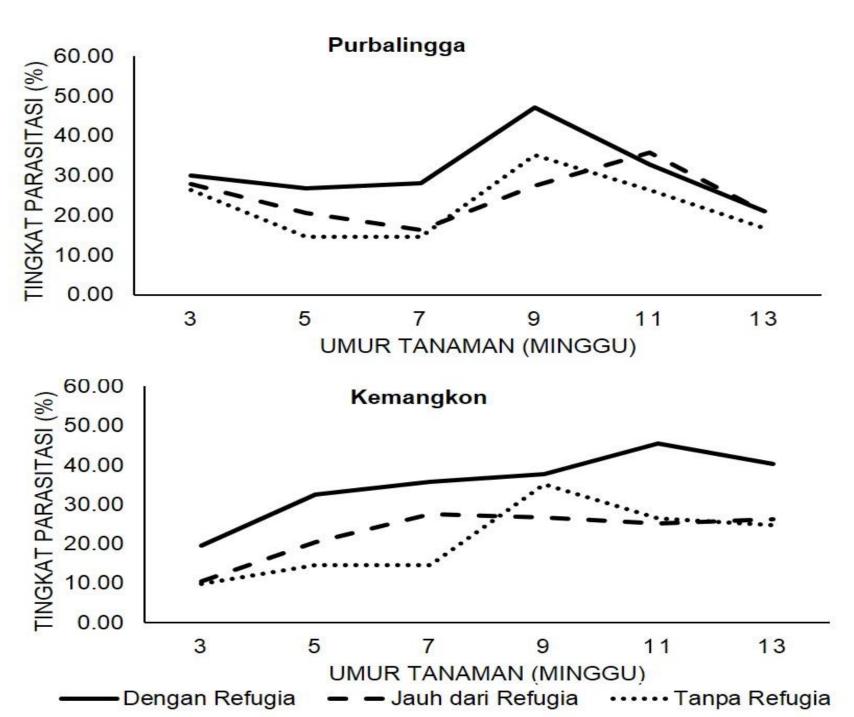
- Large scale bases; in addition to field by field management
- Continuous management; not only during the shallot season
- Improve the ecosystem services by adding the diversity in the fields

10/17/2020

The use of sex pheromone either for mass trapping SITAS GADJAH MADA and or MD Technology (Isomate)

(Trisyono et al. 2010)

Number of *Spodoptera exigua* moths caudhtersitas Gadjah Mada (per trap for 63 days) (Trisyono *et a*l. 2010)


Village	MD	Control
1. Dusun Sono	2	197
2. Dusun Depok	3	199
3. Dusun Sanden	2	383

Landscape IPM in
Pliken, Banyumas
(FAO dan Kementerian
Pertanian)

Intervention: flowering plants as refuge for natural enemies

(Courtesy of Anas, 2016)

Purbalingga (Sinulinga 2017)

The parasitism of rice brown plant hopper eggs were always higher in rice fields with refuge

ED, GLOBALLY RESPECTED

Synergistic Roles

- •Government, private sector, and growers: area-wide *S. exigua* management
- Growers: IPM in their owned land

We need to change in our paradigm and work together for shallot IPM

Terima kasih
Thank you